Logotipo ImpactU
Autor

Neonatal Seizure Detection Using Deep Convolutional Neural Networks

Acceso Abierto
ID Minciencias: ART-0000534099-44
Ranking: ART-ART_A1

Abstract:

Identifying a core set of features is one of the most important steps in the development of an automated seizure detector. In most of the published studies describing features and seizure classifiers, the features were hand-engineered, which may not be optimal. The main goal of the present paper is using deep convolutional neural networks (CNNs) and random forest to automatically optimize feature selection and classification. The input of the proposed classifier is raw multi-channel EEG and the output is the class label: seizure/nonseizure. By training this network, the required features are optimized, while fitting a nonlinear classifier on the features. After training the network with EEG recordings of 26 neonates, five end layers performing the classification were replaced with a random forest classifier in order to improve the performance. This resulted in a false alarm rate of 0.9 per hour and seizure detection rate of 77% using a test set of EEG recordings of 22 neonates that also included dubious seizures. The newly proposed CNN classifier outperformed three data-driven feature-based approaches and performed similar to a previously developed heuristic method.

Tópico:

EEG and Brain-Computer Interfaces

Citaciones:

Citations: 208
208

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteInternational Journal of Neural Systems
Cuartil año de publicaciónNo disponible
Volumen29
Issue04
Páginas1850011 - 1850011
pISSNNo disponible
ISSN1793-6462

Enlaces e Identificadores:

Artículo de revista