Logotipo ImpactU
Autor

Real-time neural backstepping control for a helicopter prototype

Acceso Cerrado
ID Minciencias: ART-0001422800-30
Ranking: ART-GC_ART

Abstract:

This paper presents a discrete-time backstepping controller based on a neural model for a Quanser 2-Degree Of Freedom (DOF) helicopter. The proposed controller is used to track the pitch and yaw position references independently. This controller is based on a Recurrent High Order Neural Network (RHONN) trained with an Extended Kalman Filter (EKF). The RHONN works as an identifier to obtain an adequate Quanser 2-DOF helicopter mathematic model, which is robust in presence of disturbances and parameter variations. To examine the robustness of the proposed controller, simulations using Matlab/Simulinkand real-time implementation are presented.

Tópico:

Adaptive Control of Nonlinear Systems

Citaciones:

Citations: 3
3

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteNo disponible
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas1 - 6
pISSNNo disponible
ISSNNo disponible
Perfil OpenAlexNo disponible

Enlaces e Identificadores:

Publicaciones editoriales no especializadas