Logotipo ImpactU
Autor

On the Accuracy–Convergence Tradeoff in Sigmoid Fuzzy Cognitive Maps

Acceso Cerrado
ID Minciencias: ART-0000593788-177
Ranking: ART-ART_A1

Abstract:

Recently, a learning procedure to improve the overall convergence of sigmoid fuzzy cognitive maps used in pattern classification was proposed. The algorithm estimates the slope of each sigmoid neuron while preserving the causal weights. This paper proposes a more realistic error function for this algorithm, which is based on 1) the dissimilarity between two consecutive responses, and 2) the dissimilarity between the current output and the expected one. As a second contribution, we introduce sufficient conditions to arrive at stability features. These conditions allow assessing the accuracy-convergence tradeoff attached to the proposed learning procedure.

Tópico:

Cognitive Science and Mapping

Citaciones:

Citations: 26
26

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteIEEE Transactions on Fuzzy Systems
Cuartil año de publicaciónNo disponible
Volumen26
Issue4
Páginas2479 - 2484
pISSNNo disponible
ISSN1063-6706

Enlaces e Identificadores:

Minciencias IDART-0000593788-177Scienti ID0000593788-177Openalex URLhttps://openalex.org/W2766846120
Doi URLhttps://doi.org/10.1109/tfuzz.2017.2768327
Artículo de revista