Logotipo ImpactU
Autor

Testing for local structure in spatiotemporal point pattern data

Acceso Cerrado
ID Minciencias: ART-0000002683-50
Ranking: ART-ART_A2

Abstract:

The detection of clustering structure in a point pattern is one of the main focuses of attention in spatiotemporal data mining. Indeed, statistical tools for clustering detection and identification of individual events belonging to clusters are welcome in epidemiology and seismology. Local second‐order characteristics provide information on how an event relates to nearby events. In this work, we extend local indicators of spatial association (known as LISA functions) to the spatiotemporal context (which will be then called LISTA functions). These functions are then used to build local tests of clustering to analyse differences in local spatiotemporal structures. We present a simulation study to assess the performance of the testing procedure, and we apply this methodology to earthquake data.

Tópico:

Data-Driven Disease Surveillance

Citaciones:

Citations: 14
14

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteEnvironmetrics
Cuartil año de publicaciónNo disponible
Volumen29
Issue5-6
PáginasNo disponible
pISSNNo disponible
ISSN1180-4009

Enlaces e Identificadores:

Scienti ID0000002683-50Minciencias IDART-0000002683-50Doi URLhttps://doi.org/10.1002/env.2463
Openalex URLhttps://openalex.org/W2753137512
Artículo de revista