Recently, novel magnetic materials have been developed for high-efficiency and high power density electric motors. In addition, next-generation semiconductor devices, like silicon carbide (SiC) or gallium nitride (GaN), have been introduced for power converters due to their high-frequency operation. Therefore, high-frequency operation of new magnetic materials is possible when they are driven by GaN or SiC inverters. Nevertheless, iron loss characterization of magnetic materials when they are excited by high-frequency signals have not been conducted yet. This paper introduces the iron losses characterization of a magnetic material at high carrier frequency excitation using a GANFET inverter. This characterization was carried out by the experimental evaluation of iron losses at carrier frequencies from 5 to 500 kHz at different deadtimes. As a result of the measurements, iron losses seem to have a trend to increase at high carrier frequencies and large deadtimes. In addition, filtering is introduced and it seems to be an effective technique for reducing iron losses.