Demostramos la existencia y ortogonalidad de operadores de onda naturalmente asociados a un Laplaciano compatible sobre una variedad completa con una esquina de codimensión 2. De hecho, probamos su completitud asintótica, es decir que la imagen de esos operadores de onda es igual al espacio de estados absolutamente contínuos del Laplaciano compatible. Logramos esto último usando metodos dependientes del tiempo que provienen del estudio de operadores de Schrödinger de varios cuerpos.