Logotipo ImpactU
Autor

Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity

Acceso Abierto
ID Minciencias: ART-0001066633-44
Ranking: ART-ART_A1

Abstract:

We prove bifurcation at infinity for a semilinear wave equation depending on a parameter $λ$ and subject to Dirichlet-periodic boundary conditions. We assume the nonlinear term to be asymptotically linear and not necessarily monotone. We prove the existence of L∞ solutions tending to $+∞$ when the bifurcation parameter approaches eigenvalues of finite multiplicity of the wave operator. Further details are presented in cases of simple eigenvalues and odd multiplicity eigenvalues.

Tópico:

Stability and Controllability of Differential Equations

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteDiscrete and Continuous Dynamical Systems
Cuartil año de publicaciónNo disponible
Volumen37
Issue4
Páginas1857 - 1865
pISSNNo disponible
ISSN1078-0947

Enlaces e Identificadores:

Artículo de revista