Logotipo ImpactU
Autor

Human activity monitoring based on hidden Markov models using a smartphone

Acceso Cerrado
ID Minciencias: ART-0000490644-77
Ranking: ART-ART_A2

Abstract:

This paper presents an human sensing (HS) system based on Hidden Markov Models (HMMs) for classifying physical activities: walking, walking-upstairs, walking-downstairs, sitting, standing and lying down. The system includes a feature extractor (developed by the authors and presented in a previous work), an HMMs training module and an HAR module. All experiments have been done using a publicly available dataset named UCI Human Activity Recognition Using Smartphones. The final results using HMMs obtain comparable results to other recognition methods. Some improvements have been obtained when considering a discriminative HMM training procedure. The best result obtains an activity recognition error rate (ARER) of 2.5%. This work is focused on independent activity recognition and extends other works from the same authors focused on activity segmentation and feature extraction.

Tópico:

Context-Aware Activity Recognition Systems

Citaciones:

Citations: 30
30

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteIEEE Instrumentation & Measurement Magazine
Cuartil año de publicaciónNo disponible
Volumen19
Issue6
Páginas27 - 31
pISSNNo disponible
ISSN1094-6969

Enlaces e Identificadores:

Artículo de revista