In this paper, we propose two new algorithms and their hardware implementations for the normal basis multiplication over GF(p <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> ), where p ∈ {2,3}. In this case, the proposed multipliers are designed using serial and digit-serial hardware architectures. The normal basis multipliers over GF(2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> ) and GF(3 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> ) are based on two proposed algorithms to compute the multiplication matrices T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</sub> in order to speed-up the execution time and to reduce the area resources. It can be seen that the new hardware architecture for the NB multiplier over GF(2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> ) has the best characteristics of area complexity presented by Reyhani [16] and time complexity presented by Azarderakhsh and Reyhani [31]. The proposed hardware architectures for the normal basis multipliers over GF(2163), GF(2233), GF(2283),GF(2409), GF(389) and GF(3233) were described in VHDL, and simulated and synthesized using Modelsim and Quartus Prime v16, respectively.
Tópico:
Cryptography and Residue Arithmetic
Citaciones:
3
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteIEEE Transactions on Circuits and Systems I Regular Papers