Logotipo ImpactU
Autor

Automatic detection of early blight infection on tomato crops using a color based classification strategy

Acceso Cerrado
ID Minciencias: ART-0001374505-4
Ranking: ART-ART_C

Abstract:

This work presents a Computer Vision prototype strategy for the automatic detection of mycotic infections on tomato crops. This Computer Vision method is based on the characterization of tomato leaflets (both healthy and early blight-infected regions of interest - ROIs) by color description (MPEG-7 standard descriptors). A small size ROI collection manually annotated by experts is used for both training and testing of a simple classifier (1-NN). The performance of each descriptor under study (Color Structure Descriptor, CSD; Color Layout descriptor, CLD; and Scalable Color Descriptor, SCD) is analysed by a nested-leave-one-out cross validation. The inner loop permits a individual descriptor configuration evaluation, while the outer loop yields an average performance comparison between different descriptors. Our results show that CSD had a better performance than SCD and CLD.

Tópico:

Smart Agriculture and AI

Citaciones:

Citations: 24
24

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteNo disponible
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas1 - 5
pISSNNo disponible
ISSNNo disponible
Perfil OpenAlexNo disponible

Enlaces e Identificadores:

Artículo de revista