Solar energy has emerged as one of the renewable energy sources which can be widely used in industrial applications where energy costs constitute a high percentage of total cost, as well as a feasible solution to reduce the overall carbon dioxide production. Currently, there are a large number of these industrial processes that strongly depend on gravity as a restrictive phenomenon of their layout, forcing them to be vertically arranged. Fluidized beds, melting processes, or material treatment are some examples. Most of them need solar radiation to be supplied in a vertical way for optimized energy exploitation. This work proposes a new concept of a concentrator for solar furnaces with the radiation coming in horizontally from the heliostat and then being concentrated and redirected at the same time into vertical towards the focus. The advantages over conventional solar furnaces are that no tower (vertical axes furnace) or no third (water cooled) mirror (horizontal axes furnace) are needed. The optical behavior of the concentrator has been analyzed, in order to show how concentrated flux evolves on the basis of its characteristic parameters.