Logotipo ImpactU
Autor

CHY-graphs on a torus

Acceso Abierto
ID Minciencias: ART-0001562045-24
Ranking: ART-ART_A1

Abstract:

Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on $$ {\mathfrak{M}}_{1,n} $$ , the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on $$ {\mathfrak{M}}_{1,n} $$ from Φ3 integrands on $$ {\mathfrak{M}}_{0,n} $$ , the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on $$ {\mathfrak{M}}_{1,n} $$ by starting instead from a given Φ3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops.

Tópico:

Black Holes and Theoretical Physics

Citaciones:

Citations: 20
20

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of High Energy Physics
Cuartil año de publicaciónNo disponible
Volumen2016
Issue10
Páginas1 - 34
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista