Logotipo ImpactU
Autor

ANÁLISIS COMPARATIVO DE LOS MÉTODOS DE EULER Y RUNGE-KUTTA EN LA SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN MEDIANTE PROGRAMACIÓN EN MATHCAD

Acceso Abierto

Abstract:

un primer intento se crearon procedimientos independientes, para resolverlas, pero resulto claro que un gran número de estas ecuaciones en el acto de hallar su solución no correspondían con los métodos clásicos, esto es, expresarlas por medio de funciones elementales del Cálculo por lo que no podían ser resueltas.No fue hasta el siglo XIX que los matemáticos se dieron cuenta que solo un número relativamente pequeño de ecuaciones diferenciales podía resolverse aplicando funciones elementales.En temprana fecha, uno de los primeros que se percato de tal cuestión fue el matemático de origen suizo Leonardo Euler que en el año de 1768 desarrollo el primer método numérico para la solución de las ecuaciones diferenciales, posteriormente se han desarrollado varios que en su forma general siguen la línea dejada por Euler, hasta llegar a uno de gran precisión e intenso uso que es el método iterativo de Runge-Kutta.El presente trabajo presenta un análisis de ambos métodos, desarrollando sus algoritmos básicos, programados en Mathcad.Pudiéndose comprobar al finalizar el grado de exactitud que presenta cada uno en la solución numérica de las ecuaciones diferenciales.

Tópico:

Accounting and Financial Management

Citaciones:

Citations: 2
2

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteRevista de Ingeniería Matemáticas y Ciencias de la Información
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas23 - 27
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista