Metallic energy absorption components should be able to absorb energy in different ways, depending on the type of the applied loads, namely axial compression, bending moment, shear loads, tensile forces, or a combination of these. A stable response through the whole deformation process is always expected, however, this depends essentially on geometrical parameters such as length and cross-section, as well as on material properties. Expanded metal meshes are manufactured upon an in-line expansion of partially slit metal sheets, creating a mesh with openings, formed by strands and bonds, a geometric confi guration that may be exploited for energy-absorbing systems. This paper presents an experimental study on the structural response of expanded metal meshes (standard and fl attened) subjected to tensile forces. The study also examines the infl uence of the annealing heat-treatment on the mechanical behavior of the expanded metal meshes. The results show that the fl attened meshes are capable to absorb more energy than the standard ones. In addition, it is noticed that standard meshes are more sensitive in terms of the structural responses to the heat-treatments than the flattened meshes.
Tópico:
Cellular and Composite Structures
Citaciones:
4
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteRevista Facultad de Ingeniería Universidad de Antioquia