Uno de los principales objetivos del área de confiabilidad es estimar la función de confiabilidad, donde tradicionalmente se utilizan estimadores no paramétricos, que son más eficientes en tamaños de muestras considerables. En este trabajo se comparan los estimadores no paramétricos para la función de confiabilidad a través del error cuadrático medio, utilizando los estimadores no paramétricos de Kaplan y Meier (1958), el estimador de Nelson (1969) y Bootstrap aplicado a Kaplan y Meier y Nelson. La comparación se hace teniendo en cuenta las estimaciones paramétricas, mediante simulación con diferentes escenarios, tiempos de interés, tamaños de muestra y porcentajes de censura, y muestra que el remuestreo Bootstrap tipo normal no presenta los mejores resultados con Kaplan y Meier (1958). Y mediante Nelson (1969), el 18 % fue más eficiente.