This paper presents a novel ultra-compact ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$0.17\times 0.17\times 0.05$</tex></formula> wavelengths) reconfigurable antenna equipped with shunt switches at the edges of the radiating elements; in addition to wide-band frequency-reconfigurability, the antenna can also adapt to different environments. The challenging task of designing a compact antenna for multi-band and multi-environment operation is tackled by a hierarchical optimization process consisting of the genetic algorithm (GA) and local search for geometry optimization, and exhaustive search for computation of the optimum switch patterns for a fixed geometry. Both tunability and environment robustness were confirmed in simulation and measurements on a proof-of-concept prototype where switches were simulated by soldering. Numerical analysis of the impact of commercial MEMS devices is also reported, including a case study of practical interest: a compact antenna that can operate at different locations around a simplified model of a laptop PC without performance degradation.
Tópico:
Microwave Engineering and Waveguides
Citaciones:
28
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteIEEE Transactions on Antennas and Propagation