Logotipo ImpactU
Autor

Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity

Acceso Abierto

Abstract:

The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV) for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV) and compressive strength with the same mixes. The prediction was made using simple regression analysis and artificial neural networks. The results revealed that artificial neural networks can be used for effectively predicting compressive strength and electrical resistivity.

Tópico:

Geophysical Methods and Applications

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteIngeniería e Investigación
Cuartil año de publicaciónNo disponible
Volumen27
Issue1
Páginas11 - 18
pISSN0120-5609
ISSNNo disponible

Enlaces e Identificadores:

Artículo de revista