This work presents a novel approach for the automatic detection of pathological voices based on fusing the information extracted by means of mel-frequency cepstral coefficients (MFCC) and features derived from the modulation spectra (MS). The system proposed uses a two-stepped classification scheme. First, the MFCC and MS features were used to feed two different and independent classifiers; and then the outputs of each classifier were used in a second classification stage. In order to establish the best configuration which provides the highest accuracy in the detection, the fusion of information was carried out employing different classifier combination strategies. The experiments were carried out using two different databases: the one developed by The Massachusetts Eye and Ear Infirmary Voice Laboratory, and a database recorded by the Universidad Politécnica de Madrid. The results show that the combination of MFCC and MS features employing the proposed approach yields an improvement in the detection accuracy, demonstrating that both methods of parameterization are complementary.