Logotipo ImpactU
Autor

Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach

Acceso Cerrado
ID Minciencias: ART-0000159328-90
Ranking: ART-ART_B

Abstract:

A novel approach for the development of linguistically interpretable fuzzy models from data is proposed. Based on this approach a methodology for inverse and indirect adaptive fuzzy control is presented. The proposed methodology includes clustering techniques to determine rules, the minimum squares method to adjust consequents and, for a sharp tuning, the descendant gradient to adjust the modal values of sets that confirm the antecedent. The antecedent partition uses triangular sets with 0.5 interpolations. The most promissory aspect in our proposal consists in achieving a great precision without sacrificing the fuzzy system interpretability. The real-world applicability of the proposed approach is demonstrated by application to a classic benchmark in system modeling and identification (Box-Jenkins gas furnace) and to a temperature control of a food process.

Tópico:

Fuzzy Logic and Control Systems

Citaciones:

Citations: 7
7

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteProceedings of ... IEEE International Conference on Fuzzy Systems
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas1 - 6
pISSNNo disponible
ISSN1098-7584

Enlaces e Identificadores:

Artículo de revista