Logotipo ImpactU
Autor

ON STRUCTURAL AND GRAPH THEORETIC PROPERTIES OF HIGHER ORDER DELAUNAY GRAPHS

Acceso Abierto
ID Minciencias: ART-0000170011-49
Ranking: ART-ART_A2

Abstract:

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with vertex set P and an edge exists between two points p, q ∈ P when there is a circle through p and q with at most k other points of P in its interior. We provide upper and lower bounds on the number of edges in an order-k Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-k Delaunay graph is connected under the flip operation when k ≤ 1 but not necessarily connected for other values of k. If P is in convex position then the order-k Delaunay graph is connected for all k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used to efficiently solve a coloring problem with applications to frequency assignments in cellular networks.

Tópico:

Computational Geometry and Mesh Generation

Citaciones:

Citations: 38
38

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteInternational Journal of Computational Geometry & Applications
Cuartil año de publicaciónNo disponible
Volumen19
Issue06
Páginas595 - 615
pISSNNo disponible
ISSN0218-1959

Enlaces e Identificadores:

Artículo de revista