ImpactU Versión 3.11.2 Última actualización: Interfaz de Usuario: 16/10/2025 Base de Datos: 29/08/2025 Hecho en Colombia
Digital very-large-scale integration (VLSI) Hopfield neural network implementation on field programmable gate arrays (FPGA) for solving constraint satisfaction problems
This paper discusses the implementation of Hopfield neural networks for solving constraint satisfaction problems using field programmable gate arrays (FPGAs). It discusses techniques for formulating such problems as discrete neural networks, and then it describes the N-Queen problem using this formulation. Finally results will be presented which compare the computation times for the custom computer against the simulation of the Hopfield network run on a high end workstation. In this way, the speed-up can be determined, that illustrate a speedup of up to 2 to 3 orders of magnitude is possible using current FPGAs devices. Key words: Hopfield neural network, field programmable gate arrays (FPGA), N-Queen problem.
Tópico:
Neural Networks and Applications
Citaciones:
1
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteJournal Of Engineering And Technology, Facultad De Ingenierías - Corporación Universitaria Lasallista.