The prediction of lane changes has been proven to be useful for collision avoidance support in road vehicles. This paper proposes an interactive multiple model (IMM)-based method for predicting lane changes in highways. The sensor unit consists of a set of low-cost Global Positioning System/inertial measurement unit (GPS/IMU) sensors and an odometry captor for collecting velocity measurements. Extended Kalman filters (EKFs) running in parallel and integrated by an IMM-based algorithm provide positioning and maneuver predictions to the user. The maneuver states Change Lane (CL) and Keep Lane (KL) are defined by two models that describe different dynamics. Different model sets have been studied to meet the needs of the IMM-based algorithm. Real trials in highway scenarios show the capability of the system to predict lane changes in straight and curved road stretches with very short latency times.
Tópico:
Autonomous Vehicle Technology and Safety
Citaciones:
126
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteIEEE Transactions on Intelligent Transportation Systems