ABSTRACT Paracoccidioidomycosis, a systemic mycosis restricted to Latin America and produced by the dimorphic fungus Paracoccidioides brasiliensis , is probably acquired by inhalation of conidia produced by the mycelial form. The macrophage (Mφ) represents the major cell defense against this pathogen; when activated with gamma interferon (IFN-γ), murine Mφs kill the fungus by an oxygen-independent mechanism. Our goal was to determine the role of nitric oxide in the fungicidal effect of Mφs on P. brasiliensis conidia. The results revealed that IFN-γ-activated murine Mφs inhibited the conidium-to-yeast transformation process in a dose-dependent manner; maximal inhibition was observed in Mφs activated with 50 U/ml and incubated for 96 h at 37°C. When Mφs were activated with 150 to 200 U of cytokine per ml, the number of CFU was 70% lower than in nonactivated controls, indicating that there was a fungicidal effect. The inhibitory effect was reversed by the addition of anti-IFN-γ monoclonal antibodies. Activation by IFN-γ also enhanced Mφ nitric oxide production, as revealed by increasing NO 2 values (8 ± 3 μM in nonactivated Mφs versus 43 ± 13 μM in activated Mφs). The neutralization of IFN-γ also reversed nitric oxide production at basal levels (8 ± 5 μM). Additionally, we found that there was a significant inverse correlation ( r = −0.8975) between NO 2 − concentration and transformation of P. brasiliensis conidia. Additionally, treatment with any of the three different nitric oxide inhibitors used (arginase, N G -monomethyl- l -arginine, and aminoguanidine), reverted the inhibition of the transformation process with 40 to 70% of intracellular yeast and significantly reduced nitric oxide production. These results show that IFN-γ-activated murine Mφs kill P. brasiliensis conidia through the l -arginine–nitric oxide pathway.