In this article we establish conditions under which canonical variables can be defined for a variational problem defined on a geometric (compact) surface. Also, we show the form the corresponding Euler-Lagrange equations assume once we rewrite them in terms of such canonical variables. Furthermore, we prove a version of Jacobi's theorem generalizing the univariate standard version of this theorem. The main results are applied to the conformal Gauss curvature functional.
Tópico:
Advanced Numerical Analysis Techniques
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
0
Información de la Fuente:
FuenteComplex Variables Theory and Application An International Journal