This work presents a generalized and versatile control approach for Modular Multilevel Converters using Lagrange Multipliers in the ABC frame. The methodology is capable of analytically obtaining desired operative conditions by calculating the differential current references previously established by the constraints in the optimization formulation, whilst obtaining the result with minimum I) differential current oscillations (Δi <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">diffk</sub> ), or II) capacitive phase energy oscillations (Δw <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Σk</sub> ). Furthermore, the energy distribution inside the MMC; i.e., the capacitive phase average energy sum (w <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Σk</sub> ) and difference (w <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Δk</sub> ), is being regulated by means of the constraint definitions.