This work presents a numerical model of the cyclic structural behavior of dissipative buckling-restrained braces, commonly used as an alternative to classical concentric braces for seismic protection of building frames and other structures. Such devices are usually composed of a slender steel core embedded in a stockiest casing that is intended to prevent its buckling when it is under compression. The casing is made either of mortar or steel, and a sliding interface is interposed between the core and the casing to prevent excessive shear stress transfer. The behavior of the steel core is described by a damage and plasticity model, the behavior of the mortar casing is described by an isotropic damage model and the sliding behavior of the interface is described by a contact penalty model. These 3 models are implemented in the Abaqus software package following an explicit formulation. In a previous article (published in an earthquake engineering journal) the model was briefly described, its ability to reproduce the cyclical behavior of buckling-restrained braces was preliminarily pointed out and their results were satisfactorily compared with those of experimental tests. The aim of this paper is to describe the model thoroughly and to present new judgments about its usefulness.
Tópico:
Seismic Performance and Analysis
Citaciones:
1
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteRevista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería