We tested in 70-day-old Sprague-Dawley rats, whether malnutrition imposed during different periods of hippocampal development produced deleterious effects on the total reference volume of the mossy fiber system. Animals were treated under four nutritional conditions: (a) well nourished; (b) prenatal protein malnourished; (c) chronic protein malnourished and (d) postnatal protein malnourished. Timm's stained material was used in coronal hippocampal sections (40 microm) to estimate--using the Principle of Cavalieri--the total reference volume of the mossy fiber system in each experimental group. Our results show that chronic and postnatal protein malnourished, but not prenatal malnourished rats, decrease the mossy fiber system and the total reference volume of the mossy fiber system are selectively vulnerable to the type of dietary restriction. Thus, chronic and posnatal protein malnutrition produce deleterious effects, but only rats under prenatal protein malnutrition were able to reorganize synapses in this plexus. These findings raise the possibility that chronic malnutrition, as a long-term stressful factor, might be an important paradigm to test structural hippocampal changes that produce physiological and pathophysiological effects, or the possibility to recover its function for nutritional rehabilitation.