Abstract:
In the paper <italic>Quantum flag varieties, equivariant quantum <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules, and localization of Quantum groups</italic>, Backelin and Kremnizer defined categories of equivariant quantum <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript q"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {O}_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D Subscript q"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {D}_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules on the quantum flag variety of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We proved that the Beilinson-Bernstein localization theorem holds at a generic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding="application/x-tex">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here we prove that a derived version of this theorem holds at the root of unity case. Namely, the global section functor gives a derived equivalence between categories of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U Subscript q"> <mml:semantics> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">U_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D Subscript q"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {D}_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules on the quantum flag variety. For this we first prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D Subscript q"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {D}_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an Azumaya algebra over a dense subset of the cotangent bundle <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Superscript star Baseline upper X"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>⋆<!-- ⋆ --></mml:mo> </mml:msup> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">T^\star X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the classical (char <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) flag variety <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This way we get a derived equivalence between representations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U Subscript q"> <mml:semantics> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">U_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and certain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript upper T Sub Superscript star Subscript upper X"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>⋆<!-- ⋆ --></mml:mo> </mml:msup> <mml:mi>X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {O}_{T^\star X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules. In the paper <italic>Localization for a semi-simple Lie algebra in prime characteristic</italic>, by Bezrukavnikov, Mirkovic, and Rumynin, similar results were obtained for a Lie algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g Subscript p"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathfrak {g}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in char <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Hence, representations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g Subscript p"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathfrak {g}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U Subscript q"> <mml:semantics> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">U_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding="application/x-tex">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>’th root of unity) are related via the cotangent bundles <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Superscript star Baseline upper X"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>⋆<!-- ⋆ --></mml:mo> </mml:msup> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">T^\star X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in char <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and in char <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively.
Tópico:
Algebraic structures and combinatorial models