Logotipo ImpactU
Autor

Reconstruction of sparse signals from ℓ1 dimensionality-reduced Cauchy random-projections

Acceso Cerrado
ID Minciencias: ART-0000826278-17
Ranking: ART-ART_A1

Abstract:

Dimensionality reduction via linear random projections are used in numerous applications including data streaming, information retrieval, data mining, and compressive sensing (CS). While CS has traditionally relied on normal random projections, corresponding to ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> distance preservation, a large body of work has emerged for applications where ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> approximate distances may be preferred. Dimensionality reduction in ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> use Cauchy random projections that multiply the original data matrix B ∈ 葷 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D×n</sup> with a Cauchy random matrix R ∈ 葷 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n×k</sup> (k « min(n,D)), resulting in a projected matrix C ∈ 葷 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D×k</sup> . This paper focuses on developing signal reconstruction algorithms from Cauchy random projections, where the large suite of reconstruction algorithms developed in compressive sensing perform poorly due to the lack of finite second-order statistics in the projections. In particular, a set of regularized coordinate-descent Myriad regression based reconstruction algorithms are developed using, both l <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> and Lorentzian norms as sparsity inducing terms. The l <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> -regularized algorithm shows superior performance to other standard approaches. Simulations illustrate and compare accuracy of reconstruction.

Tópico:

Sparse and Compressive Sensing Techniques

Citaciones:

Citations: 7
7

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuenteIEEE International Conference on Acoustics Speech and Signal Processing
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
Páginas4014 - 4017
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Minciencias IDART-0000826278-17Scienti ID0000826278-17Doi URLhttps://doi.org/10.1109/icassp.2010.5495770
Openalex URLhttps://openalex.org/W2066316014
Artículo de revista