Logotipo ImpactU
Autor

On a goodness-of-fit test for normality with unknown parameters and type-II censored data

Acceso Cerrado
ID Minciencias: ART-0001436749-3
Ranking: ART-ART_C

Abstract:

We propose a new goodness-of-fit test for normal and lognormal distributions with unknown parameters and type-II censored data. This test is a generalization of Michael's test for censored samples, which is based on the empirical distribution and a variance stabilizing transformation. We estimate the parameters of the model by using maximum likelihood and Gupta's methods. The quantiles of the distribution of the test statistic under the null hypothesis are obtained through Monte Carlo simulations. The power of the proposed test is estimated and compared to that of the Kolmogorov–Smirnov test also using simulations. The new test is more powerful than the Kolmogorov–Smirnov test in most of the studied cases. Acceptance regions for the PP, QQ and Michael's stabilized probability plots are derived, making it possible to visualize which data contribute to the decision of rejecting the null hypothesis. Finally, an illustrative example is presented.

Tópico:

Statistical Distribution Estimation and Applications

Citaciones:

Citations: 15
15

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Applied Statistics
Cuartil año de publicaciónNo disponible
Volumen37
Issue7
Páginas1193 - 1211
pISSNNo disponible
ISSN1360-0532

Enlaces e Identificadores:

Minciencias IDART-0001436749-3Scienti ID0001436749-3Openalex URLhttps://openalex.org/W2059781142
Doi URLhttps://doi.org/10.1080/02664760902984626
Artículo de revista