The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot’s equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases.
Tópico:
Seismic Imaging and Inversion Techniques
Citaciones:
148
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteThe Journal of the Acoustical Society of America