Logotipo ImpactU
Autor

On the asymptotic hyperstability of switched systems under integral-type feedback regulation Popovian constraints

Acceso Cerrado
ID Minciencias: ART-0001493627-6
Ranking: ART-ART_A2

Abstract:

This paper deals with the asymptotic hyperstability of switched time-varying dynamic systems involving switching actions among linear time-invariant parametrizations in the feed-forward loop for any feedback regulator controller potentially being also subject to switching through time while being within a class which satisfies a Popov-type integral inequality. Asymptotic hyperstability is proved to be achievable under very generic switching laws if at least one of the feed-forward parametrization possesses a strictly positive real transfer function, a minimum residence time interval is respected for each activation time interval of such a parametrization and a maximum allowable residence time interval is simultaneously maintained for all active parametrizations which are not positive real, if any. In the case where all the feed-forward parametrizations possess a common Lyapunov function, asymptotic hyperstability of the switched closed-loop system is achieved under arbitrary switching.

Tópico:

Stability and Control of Uncertain Systems

Citaciones:

Citations: 14
14

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteIMA Journal of Mathematical Control and Information
Cuartil año de publicaciónNo disponible
Volumen32
Issue2
Páginas359 - 386
pISSNNo disponible
ISSN1471-6887

Enlaces e Identificadores:

Scienti ID0001493627-6Minciencias IDART-0001493627-6Openalex URLhttps://openalex.org/W2038618043
Doi URLhttps://doi.org/10.1093/imamci/dnt045
Artículo de revista