In many real-life applications it is important to know how to deal with missing data (incomplete feature vectors). The ability of handling missing data has become a fundamental requirement for pattern classification because inappropriate treatment of missing data may cause large errors or false results on classification. A novel effective neural network is proposed to handle missing values in incomplete patterns with multitask learning (MTL). In our approach, a MTL neural network learns in parallel the classification task and the different tasks associated to incomplete features. During the MTL process, missing values are estimated or imputed. Missing data imputation is guided and oriented by the classification task, i.e., imputed values are those that contribute to improve the learning. We prove the robustness of this MTL neural network for handling missing values in classification problems from UCI database.
Tópico:
Data Mining Algorithms and Applications
Citaciones:
7
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteThe 2006 IEEE International Joint Conference on Neural Network Proceedings