The unsteady, buoyancy-induced, hydromagnetic, thermal convection flow in a semi-infinite porous regime adjacent to an infinite hot vertical plate moving with constant velocity, is studied in the presence of significant thermal radiation. The momentum and energy conservation equations are normalized and then solved using both the Laplace transform technique and Network Numerical Simulation. Excellent agreement is obtained between both analytical and numerical methods. An increase in Hartmann number (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>) strongly decelerates the flow and for very high strength magnetic fields <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mn>20</mml:mn></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>, the flow is reversed after a short time interval. The classical velocity overshoot is also detected close to the plate surface for low to intermediate values of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> at both small and large times; however this overshoot vanishes for larger strengths of the transverse magnetic field <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>. An increase in radiation-conduction parameter (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msub></mml:math>) significantly increases temperature throughout the porous regime at both small and larger times, adjacent to the plate, but decreases the shear stress magnitudes at the plate. Temperature gradient is reduced at the plate surface for all times, with a rise in radiation-conduction parameter (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msub></mml:math>). Shear stress is reduced considerably with an increase in Darcian drag parameter (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>).