Logotipo ImpactU
Autor

Dirichlet boundary condition for the Ginzburg-Landau equations

Acceso Abierto
ID Minciencias: ART-0000965332-105
Ranking: ART-ART_C

Abstract:

As is well known, the Ginzburg Landau phenomenological theory described with a good accuracy the thermodynamic properties of a superconducting material. The system of two coupled nonlinear differential equations is completed with the usual Neumann boundary condition as long as is considered a superconductor insulator interface. In this paper, we solve the Ginzburg Landau equations for a circular geometry containing a half-circular pillar defect and considering the unusual superconducting Dirichlet boundary condition. This choice, leading to take the extrapolation de Gennes length equal to zero. Our results point that, the thermodynamic critical fields, magnetization, free energy and vorticity, depend on the chosen boundary condition.

Tópico:

Physics of Superconductivity and Magnetism

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteJournal of Physics Conference Series
Cuartil año de publicaciónNo disponible
Volumen466
IssueNo disponible
Páginas012027 - 012027
pISSNNo disponible
ISSN1742-6596

Enlaces e Identificadores:

Artículo de revista