Abstract:
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J colon double-struck upper R right-arrow double-struck upper R"> <mml:semantics> <mml:mrow> <mml:mi>J</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">J: \mathbb {R} \to \mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a nonnegative, smooth function with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript double-struck upper R Endscripts upper J left-parenthesis r right-parenthesis d r equals 1"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mi>J</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>d</mml:mi> <mml:mi>r</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _{\mathbb {R}} J(r)dr =1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, supported in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket negative 1 comma 1 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, symmetric, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J left-parenthesis r right-parenthesis equals upper J left-parenthesis negative r right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>J</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>J</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">J(r)=J(-r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and strictly increasing in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket negative 1 comma 0 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[-1,0]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u Subscript t Baseline left-parenthesis x comma t right-parenthesis equals integral Subscript negative upper L Superscript upper L Baseline left-parenthesis upper J left-parenthesis StartFraction x minus y Over u left-parenthesis y comma t right-parenthesis EndFraction right-parenthesis minus upper J left-parenthesis StartFraction x minus y Over u left-parenthesis x comma t right-parenthesis EndFraction right-parenthesis right-parenthesis d y comma x element-of left-bracket negative upper L comma upper L right-bracket period"> <mml:semantics> <mml:mstyle displaystyle="true" scriptlevel="0"> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>L</mml:mi> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>J</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mstyle displaystyle="true" scriptlevel="0"> <mml:mfrac> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−</mml:mo> <mml:mi>y</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mstyle> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>−</mml:mo> <mml:mi>J</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mstyle displaystyle="true" scriptlevel="0"> <mml:mfrac> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−</mml:mo> <mml:mi>y</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mstyle> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace width="thinmathspace"/> <mml:mi>d</mml:mi> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="1em"/> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−</mml:mo> <mml:mi>L</mml:mi> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo>.</mml:mo> </mml:mstyle> <mml:annotation encoding="application/x-tex">\displaystyle u_t (x,t)= \int _{-L}^{L} \left (J\left (\dfrac {x-y}{u(y,t)}\right ) - J\left (\dfrac {x-y}{u(x,t)}\right ) \right ) \, dy, \quad x \in [-L,L].</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">t\to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments.
Tópico:
Advanced Mathematical Modeling in Engineering