Logotipo ImpactU
Autor

Graded Lie algebras and q-commutative and r-associative parameters

Acceso Abierto
ID Minciencias: ART-0000095770-88
Ranking: ART-GC_ART

Abstract:

We study graded Lie algebras whose transformation parameters are graded q-commutativive and r-associative. We study first some graded algebras over a field, with no zero divisors at the level of monomials in their graded algebra generators. These generators are q-commutative and r-associative. We address the cohomology of the q-function and r-functions, in particular we study quaternions and octonions. We then define algebras whose transformation parameters are q-commutative and r-associative. We address a generalization of a theorem by Scheunert on its relation to Lie (super)algebras. We show finally that for the cases studied by Scheunert there is always a real and faithful transformation parameter basis with the required q-commutativity. We use this basis to perform a transformation on the graded Lie algebra that relates it to a plain Lie (super)algebra while respecting the self-adjoint character of generators and preserving the group grading. Keywords: Graded Lie (super)algebras, Color Lie (super)algebras, noncommutative algebras, nonassociative algebras, cohomology of deformation parameters, perfect algebra. AMS-MSC: 17B70, 17B75, 22E60, 17A99, 17D99, 13D03, 20J06.

Tópico:

Algebraic structures and combinatorial models

Citaciones:

Citations: 4
4

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteSão Paulo Journal of Mathematical Sciences
Cuartil año de publicaciónNo disponible
Volumen3
Issue2
Páginas265 - 265
pISSNNo disponible
ISSN2316-9028

Enlaces e Identificadores:

Publicaciones editoriales no especializadas