Abstract Well stimulation for production or injection enhancement in mature fields is a key and challenging task. Loss of reservoir energy due to pressure depletion coupled with complex damage scenarios existing in adverse petro physical environments can become restrictive factors for the proper performance of conventional liquid based chemical stimulation systems. Main limitations are normally related to high interfacial tensions preventing optimal well's clean up and cost-effective achievable penetrations. This work presents a new well stimulation concept in which the carrying system is gas instead of liquid. The overall study will be presented in 2 parts. Part I will discuss basic physical questions related to treatment durability as a function of deployment method (continuous dispersion vs liquid batch gas displacement) for at least two damage scenarios of particular interest: asphaltene deposition and condensate blockage. A basic mechanistic simulation is also presented for benefit estimations at well scale. Part II will focus on field trials design and execution using micellar and/or fluoropolymer type of chemistries that exhibited the best performance when tested under laboratory conditions. Experiments herein presented were done in formation sandstone cores simulating reservoir conditions. It is shown that natural gas when used as the carrying system to deploy conventional asphaltene dissolution and condensate removal chemistries enhances both Ko re-establishment and treatment durability as compared to equivalent liquid-based applications. Additional studies are being performed to maximize the effectiveness of the GaStim concept. Sensibilities to gas type (N2, CO2), added chemical and dosages as long as field trial documentation will be presented in part II of the present work. GaStim concept is presented as a novel chemical stimulation technique potentially allowing deeper penetrations and better chemical adsorptions. Its potential, although still not fully undiscovered, is certainly supported by higher Ko reestablishment values and longer treatment durabilities observed.
Tópico:
Hydraulic Fracturing and Reservoir Analysis
Citaciones:
10
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteSPE Latin America and Caribbean Petroleum Engineering Conference