Logotipo ImpactU
Autor

A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order

Acceso Cerrado

Abstract:

A quasilinear elliptic equation of second order can be split into a first order system in various ways. We present and analyze a stabilized finite element method for the system, which is well suited for any of these possible splittings. Under minimal assumptions on the continuous solution, existence and (nearly) optimal convergence in $L^\infty$ of the discrete solutions is established. This result holds for any choice of the stabilization parameter $\omega>0$. Moreover, the paper presents a framework for investigating other mixed methods for unsymmetric first order systems.

Tópico:

Advanced Numerical Methods in Computational Mathematics

Citaciones:

Citations: 1
1

Citaciones por año:

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

SCImago Journal & Country Rank
FuenteSIAM Journal on Numerical Analysis
Cuartil año de publicaciónNo disponible
Volumen43
Issue3
Páginas949 - 969
pISSNNo disponible
ISSN1095-7170

Enlaces e Identificadores:

Artículo de revista