Abstract We investigate the possibility of cooling an atomic gas enclosed in an optical cavity using blue-detuned laser light of sufficient intensity that excitation of the atoms cannot be neglected. We consider an ensemble of two-level atoms confined inside a simple Fabry–Perot cavity in two different geometric configurations: in one (‘cavity-pump’ configuration) the pump field is directed along the cavity axis and in the other (‘atom-pump’ configuration) the pump field is directed perpendicular to the cavity axis. Numerical simulations of the semi-classical models for each configuration are compared. Both configurations demonstrate cooling using a blue-detuned pump field. It is shown that in the cavity-pump configuration there is no collective enhancement of the cooling rate over that of free space blue-cooling. In contrast, the atom-pump configuration demonstrates collective enhancement of the cooling rate and intracavity field intensity. Keywords: cavity coolingcollectivesuperradiance Acknowledgement The authors would like to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for support via research Grant No. EP/E009301/01.