This paper compares the speed performance of a set of classic image algorithms for evaluating texture in images by using CUDA programming. We include a summary of the general program mode of CUDA. We select a set of texture algorithms, based on statistical analysis, that allow the use of repetitive functions, such as the Coocurrence Matrix, Haralick features and local binary patterns techniques. The memory allocation time between the host and device memory is not taken into account. The results of this approach show a comparison of the texture algorithms in terms of speed when executed on CPU and GPU processors. The comparison shows that the algorithms can be accelerated more than 40 times when implemented using CUDA environment.
Tópico:
Image Retrieval and Classification Techniques
Citaciones:
0
Citaciones por año:
No hay datos de citaciones disponibles
Altmétricas:
0
Información de la Fuente:
FuenteProceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE