ImpactU Versión 3.11.2 Última actualización: Interfaz de Usuario: 16/10/2025 Base de Datos: 29/08/2025 Hecho en Colombia
Implementación de un software para el análisis de imágenes aéreas multiespectrales de caña de azúcar [Implementation of software for the analysis of multispectral aerial images sugarcane]
Resumen En este trabajo se presenta una implementación de software para la determinación del estado de plantaciones de caña de azúcar basado en el análisis de imágenes aéreas multiespectrales. En la actualidad no existen técnicas precisas para estimar objetivamente la superficie de caña caída o volcada, y esta ocasiona importantes pérdidas de productividad en la cosecha y en la industrialización. Para la realización de éste trabajo se confeccionó un dataset referencial de imágenes, y se implementó un software a partir del cual se obtuvieron indicadores propuestos como representativos del fenómeno agronómico, y se realizaron análisis de los datos generados. Además se implementó un software clasificador referencial basado en redes neuronales con el que se estimó la fortaleza de dichos indicadores y se estimó la superficie afectada en forma cuantitativa y espacial. Palabras ClavesCaña de azúcar, cuantificación, volcado, red neuronal, procesamiento de imagen Abstract In this paper we present a software implementation for determining the status of sugarcane plantations based on the analysis of multispectral aerial images. Currently there are no precise techniques to estimate objectively the cane area fall or overturned, and this causes significant losses in crop productivity and industrialization. For the realization of this work a dataset benchmark images was made, and a software, from which were obtained representative proposed indicators for the agronomic phenomenon was implemented, and analyzes of the data generated were realized. In addition, we implemented a software benchmark classifier based on neural networks with which we estimated the strength of these indicators and the area affected was estimated quantitatively and spatially. Keywords Sugarcane, quantification, fall, neural network, image processing