Yttria Stabilized Zirconia (YSZ) is the most common thermal barrier coating material with a temperature tolerance up to 1200°C above which it undergoes phase transitions deteriorating its thermo-mechanical properties. Apart from YSZ, oxides having the complex Magnetoplumbite structure such as LaMgAl <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">19</sub> are potential candidates for even higher temperature applications due to their thermo-physical properties. In this work, LaMgAl <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">19</sub> was synthesized through sol-gel citric acid method using nitrate precursors. The powders were subjected to calcination treatment for 5 hours at 1000 °C, 1100 °C, 1200 °C, 1300 °C and 1400 °C. The microstructure was analyzed by XRD and SEM techniques. XRD results identified a pure single phase of LaMgAl <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">19</sub> , obtained successfully at 1200 °C. Effects arising from changing calcination temperature show that lattice strain reduced and crystallite size increased with increase in temperature. SEM results revealed that the platelet structure of LaMgAl <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">19</sub> was obtained which could increase thermal tolerance.