We investigate the role that non-crossing partitions play in the study of positroids, a class of matroids introduced by Postnikov. We prove that every positroid can be constructed uniquely by choosing a non-crossing partition on the ground set, and then placing the structure of a connected positroid on each of the blocks of the partition. This structural result yields several combinatorial facts about positroids. We show that the face poset of a positroid polytope embeds in a poset of weighted non-crossing partitions. We enumerate connected positroids, and show how they arise naturally in free probability. Finally, we prove that the probability that a positroid on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket n right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[n]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is connected equals <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 slash e squared"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>e</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">1/e^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> asymptotically.
Tópico:
Advanced Combinatorial Mathematics
Citaciones:
55
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteTransactions of the American Mathematical Society