Epiphytic vascular plants and bryophytes constitute an important component of cloud forest canopies. Because of their different characteristics compared with leaves and other tree structural elements, epiphytes can be expected to behave differently in terms of their ability to intercept and store rain and cloud water, whereas losses through evaporation and drip may also occur at different rates. The water dynamics of epiphytes were studied in a windward lower montane cloud forest in northern Costa Rica. The exposed site experienced frequent horizontal precipitation (fog and wind-driven rain) as well as strong winds. In situ epiphyte wetting experiments were conducted at different levels within the 20-m canopy during a series of fog events using pre-weighed branches with known epiphyte biomass, while making simultaneous measurements of fog density and drop-size spectrum on a tower extending above the canopy. Rates of water loss via evaporation from pre-wetted epiphyte-laden branches suspended at different heights within the canopy were determined on dry days. Storage capacities were determined by gravimetric means, both in the field and under controlled conditions. Total epiphyte biomass of the forest was estimated through systematic sampling of three emergent trees and five sub-canopy trees in combination with a diameter survey of four plots of 1000 m2 each. Fog interception rates by epiphyte-laden branches differed with position in the canopy, with an average rate of 54.7 ml hour−1 kg−1 of oven-dry biomass. Absorption rates were correlated with fog liquid water content and initial moisture content of the sample. […]