Logotipo ImpactU
Autor

Local Zeta Functions for Non-degenerate Laurent Polynomials Over p-adic Fields

Acceso Abierto
ID Minciencias: ART-0000001432-5
Ranking: ART-ART_C

Abstract:

In this article, we study local zeta functions attached to Laurent polynomials over p-adic fields, which are non-degenerate with respect to their Newton polytopes at infinity. As an application we obtain asymptotic expansions for p-adic oscillatory integrals attached to Laurent polynomials. We show the existence of two different asymptotic expansions for p-adic oscillatory integrals, one when the absolute value of the parameter approaches infinity, the other when the absolute value of the parameter approaches zero. These two asymptotic expansions are controlled by the poles of twisted local zeta functions of Igusa type.

Tópico:

Algebraic Geometry and Number Theory

Citaciones:

Citations: 0
0

Citaciones por año:

No hay datos de citaciones disponibles

Altmétricas:

Paperbuzz Score: 0
0

Información de la Fuente:

FuentearXiv (Cornell University)
Cuartil año de publicaciónNo disponible
VolumenNo disponible
IssueNo disponible
PáginasNo disponible
pISSNNo disponible
ISSNNo disponible

Enlaces e Identificadores:

Scienti ID0000001432-5Minciencias IDART-0000001432-5Openalex URLhttps://openalex.org/W1877259050
Doi URLhttps://doi.org/10.48550/arxiv.1009.3680Open_access URLhttps://arxiv.org/abs/1009.3680
Artículo de revista