En este artículo se propone el método bootstrap bayesiano para realizar inferencias sobre una proporción ρ en una población finita a partir de una muestra conprobabilidades desiguales. Vía simulación Monte Carlo se determinó que a partirde una adecuada elección de la distribución a priori de ρ la metodología propuestaobtienen estimaciones menos sesgadas y de menor varianza e intervalos de confianza con niveles de confianza más altos y de menor longitud en comparación con el π-estimador clásico y el estimador BPSP propuesto por Chen (2010). Finalmentese ejemplifica la implementación de la metodología.