In this paper we study the equation <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u Subscript t Baseline equals normal upper Delta left-parenthesis phi left-parenthesis u right-parenthesis minus lamda f left-parenthesis u right-parenthesis plus lamda u Subscript t Baseline right-parenthesis plus f left-parenthesis u right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u_t=\Delta (\phi (u) - \lambda f(u) + \lambda u_t) + f(u)</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> in a bounded domain of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript d"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d greater-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">d\ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with homogeneous boundary conditions of the Neumann type, as a model of aggregating population with a migration rate determined by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ</mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and total birth and mortality rates characterized by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We will show that the aggregating mechanism induced by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis u right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi (u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> allows the survival of a species in danger of extinction. Numerical simulations suggest that the solutions stabilize asymptotically in time to a not necessarily homogeneous stationary solution. This is shown to be the case for a particular version of the function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis u right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi (u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Tópico:
Mathematical and Theoretical Epidemiology and Ecology Models
Citaciones:
171
Citaciones por año:
Altmétricas:
0
Información de la Fuente:
FuenteTransactions of the American Mathematical Society