Defining whether a financial institution is systemically important (or not) is challenging due to (i) the inevitability of combining complex importance criteria such as institutions' size, connectedness and substitutability; (ii) the ambiguity of what an appropriate threshold for those criteria may be; and (iii) the involvement of expert knowledge as a key input for combining those criteria. The proposed method, a Fuzzy Logic Inference System, uses four key systemic importance indicators that capture institutions' size, connectedness and substitutability, and a convenient deconstruction of expert knowledge to obtain a Systemic Importance Index.