For the design of the propeller of super-cavitations, we proceeded according to the proposal developed by Kudo et al. (2001), which was to stimulate the cavitations by making a groove on the side of the blade with the lowest pressure. To establish the location of the groove or cavitator and achieve the predetermined objective, computational simulations were carried out of the pressure distribution in the hydro-dynamic profiles along the blade. Once the zone was identified, two propellers were built, a conventional one and another with grooves for its later testing which would allow us to know the difference in behavior between them. The tests proved that the propeller with grooves presented an increase in efficiency, and therefore, in the thrust speed, with a noticeable shifting of the maximum efficiency towards higher angular velocities than those of the design.